Chapter 1

Plane waves in three dimensions

In this chapter we seek a deeper understandinmeofe waves inthreedimensions, where the
examples and theory typically refer to functions of titrend two space coordinates, {), or

to 3-D migration images where thecoordinate is depth or traveltime depth. As in Chapter
??, we need to decompose data volumes into subcubes, shown in Figure 1.1.

L

Figure 1.1: Leftis space of inputs and
outputs. Right is their separation dur-

ing analysis.|Imn-rayab3D [NR]

In this chapter we will see that the wave model implies the 3-D whitener is not a cube filter
but two planar filters. The wave model allows us to determine the scale factor of a signal, even
where signals fluctuate in strength because of interference. Finally, we examine the local-
monoplane concept that uses the superposition principle to distinguish a sedimentary model
cube from a dataube.

1.1 THE LEVELER: A VOLUME OR TWO PLANES?

In two dimensions, levelers were taken to be PEFs, small rectangular planes of numbers in
which the time axis included enough points to include reasonable stepouts were included and
the space axis contained one level plus another space level, for each plane-wave slope sup-
posed to be present.

We saw that a whitening filter ithreedimensions is a small volume with shape defined
by subroutinecreatehelix() . It might seem natural that the number of points onxhe
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2 CHAPTER 1. PLANE WAVES IN THREE DIMENSIONS

andy-axes be related to the number of plane waves present. Instead, | assert that if the vol-
ume contains plane waves, we don't wantaumefilter to whiten it; we can use pair of

planar filters to do so and the order of those filters is the number of planes thought to be si-
multaneously present. | have no firm mathematical proofs, but | offer you some interesting
discussions, examples, and computer tools for you to experiment with. It seems that some ap-
plications call for the volume filter while others call for the two planes. Because two planes of
numbers generally contain many fewer adjustable values than a volume, statistical-estimation
reasons also favor the planes.

What is the lowest-order filter that, when applied to a volume, will destroy one and pnly
one slope of plane wave?

First we seek the answer to the question, “What is the lowest order filter that will destroy
one and only one plane?” To begin with, we consider that plane to be horizontal so the volume
of numbers isf (t, X, y) = b(t) whereb(t) is an arbitrary function of time. One filter that has
zero-valued output (destroys the plane)ys= d/dx. Another is the operatdl, = 0/9y. Still
another is thé.aplacian operator which isdyx + dyy = 92/3x%+ 32/9y>.

The problem witha/ox is that although it destroys the required plane, it also destroys
f(t,x,y) = a(t,y) wherea(t, y) is anarbitrary function of ¢, y) such as a cylinder with axis
parallel to thex-axis. The operato#/dy has the same problem but with the axes rotated. The
Laplacian operator not only destroys our desired plane, but it also destroys the well known
nonplanar functiom®* cosg@y), which is just one example of the many other interesting shapes
that constitute solutions to Laplace’s equation.

| remind you of a basic fact: When we set up the fitting goal Af, thequadratic form
minimized isf’A’Af, which by differentiation with respect i gives us (in a constraint-free
region)A’Af = 0. So, minimizing the volume integral (actually the sum) of the squares of the
components of the gradient implies that Laplace’s equation is satisfied.

In any volume, the lowest-order filter that will destroy level planes and no other wave slope
is a filter that has one input artdio outputs That filter is the gradient,d(/dx,d/dy). Both
outputs vanish if and only if the plane has the proper horizontal orientation. Other objects and
functions are not extinguished (except for the non-wave-like functi@rx, y) = const). It is
annoying that we must deal wittvo outputs and that will be the topic of further discussion.

A wavefield of tilted parallel planes i$(t,x,y) = g(r — pxX — pyYy), whereg() is an
arbitrary one-dimensional function. The operator that destroys these tilted planes is the two-
component operatobf + pyd, dy + Pyok).
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The operator that destroys a family of dipping planes

f(t,x,y)

9(t — pxX— pyYy)

0
x T Px3

d
ay + Py s

1.1.1 PEFs overcome spatial aliasing of difference operators

The problem | found with finite-difference representations of differential operators is that they
are susceptible tepatial aliasing Even before they encounter spatial aliasing, they are sus-
ceptible to accuracy problems known in finite-difference wave propagation as “frequency dis-
persion.” The aliasing problem can be avoided by the use of spatial prediction operators such
as

(1.1)

=
D Q0O TD

where the vertical axis is time; the horizontal axis is space; and-tkeafe zeros. Another
possibility is the 2-D whitening filter

(1.2)

=
O Q0O T

Imagine all the coefficients vanished lslit= —1 and the given 1. Such filters would annihilate

the appropriately sloping plane wave. Slopes that are not exact integers are also approximately
extinguishable, because the adjustable filter coefficients can interpolate in time. Filters like
(1.2) do the operatiofy + pyd;, Which is a component of the gradient in the plane of the
wavefront,andthey include a temporal deconvolution aspect and a spatial coherency aspect.
My experience shows that the operators (1.1) and (1.2) behave significantly differently in
practice, and | am not prepared to fully explain the difference, but it seems to be similar to the
gapping of one-dimensional filters.

You might find it alarming that your teacher is not fully prepared to explain the difference
between a volume and two planes, but please remember that we are talking about the factor-
ization of the volumetric spectrum. Spectral matrices are well known to have structure, but
books on theory typically handle them as simply Anyway, wherever you see akin a
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three-dimensional context, you may wonder whether it should be interpreted as a cubic filter
that takes one volume to another, or as two planar filters that take one volume to two volumes
as shown in Figure 1.2.

Figure 1.2: An inline 2-D PEF and
a crossline 2-D PEF both applied
throughout the volume. To find each
filter, minimize each output power in-
dependently.  |Imn-rayab3Dopelr
INR]

1.1.2 My view of the world

| start from the idea that the four-dimensional worgx( y, z) is filled with expanding spher-

ical waves and with quasispherical waves that result from reflection from quasiplanar objects
and refraction through quasihomogeneous materials. We rarely, if ever see in an observa-
tional data cube, an entire expanding spherical wave, but we normally have a two- or three-
dimensional slice with some wavefront curvature. We analyze data subcubes thatickall

In any brick we see only local patches of apparent plane waves. | callgltatetets From the
microview of this brick, the platelets come from the “great random-point-generator in the sky,”
which then somehow convolves the random points with a platelike impulse response. If we
could deconvolve these platelets back to their random source points, there would be nothing
left inside the brick because the energy would have gone outside. We would have destroyed
the energy inside the brick. If the platelets were coin shaped, then the gradient magnitude
would convert each coin to its circular rim. The plate sizes and shapes are all different and
they damp with distance from their centers, as do Gaussian beams. If we obsgsiedtead

of wavefront platelets then we might think of the world as being filled with noodles, and then.

How is it possible that in a small brick we can do something realistic about deconvolving
a spheroidal impulse response that is much bigger than the brick? The same way as in one
dimension, where in a small time interval we can estimate the correct deconvolution filter of a
long resonant signal. A three-point filter destroys a sinusoid.

The inverse filter to the expanding spherical wave might be a huge cube. Good approxima-
tions to this inverse at the brick level might be two small planes. Their time extent would be
chosen to encompass the slowest waves, and their spatial extent could be two or three points,
representing the idea that normally we can listen to only one person at a time, occasionally we
can listen to two, and we can never listen to three people talking at the same time.



1.2. WAVE INTERFERENCE AND TRACE SCALING 5

1.2 WAVE INTERFERENCE AND TRACE SCALING

Although neighboring seismometers tend to show equal powers, the energy on one seismome-
ter can differ greatly from that of a neighbor for both theoretical reasons and practical ones.
Should a trace ever be rescaled to give it the same energy as its neighbors? Here we review
the strong theoretical arguments against rescaling. In practice, however, especially on land
where coupling is irregular, scaling seems a necessity. The question is, what can go wrong if
we scale traces to have equal energy, and more basically, where the gralediactorcannot

be recorded, what should we do to get the best scale factor? A related question is how to
make good measurements of amplitude versus offset. To understand these issues we review
the fundamentals of wave interference.

Theoretically, a scale-factor problem arises becéosally, wavefields, not energies, add.
Nodes on standing waves are familiar from theory, but they could give you the wrong idea
that the concept of node is one that applies only with sinusoids. Actually, destructive interfer-
ence arises anytime a polarity-reversed waveform bounces back and crosses itself. Figure 1.3
shows two waves of opposite polarity crossing each other. Observe that one seismogram has
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Figure 1.3: Superp_osition _of ST
plane waves of opposite polarity. ‘”‘””“H}HHM””””‘

l [ER] T T

a zero-valued signal, while its neighbors have anomalously higher amplitudes and higher en-
ergies than are found far away from the interference. The situation shown in Figure 1.3 does
not occur easily in nature. Reflection naturally comes to mind, but usually the reflected wave

crosses the incident wave at a later time and then they don’t extinguish. Approximate extin-

guishing occurs rather easily when waves are quasi-monochromatic. We will soon see, how-
ever, that methodologies for finding scales all begin with deconvolution and that eliminates

the monochromatic waves.
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1.2.1 Computing the proper scale factor for a seismogram

With data like Figure 1.3, rescaling traces to have equal energy would obviously be wrong. The
guestion is, “How can we determine the proper scale factor?” As we have seen, a superposition
of N plane waves exactly satisfies an N-th ordenqjrdifference equation. Given a 2-D wave
field, we can find its PEF by minimizing output power. Then we ask the question, could
rescaling the traces give a lower output power? To answer this, we set up an optimization
goal: Given the leveler (be it a cubic PEF or two planar ones), find the best trace scales. (After
solving this, we could return to re-estimate the leveler, and iterate.) To solve for the scales, we
need a subroutine that scales traces and the only tricky part is that the adjoint should bring us
back to the space of scale factors. This is donedajetrace

module scaletrace {
integer, private . nl, n2
real, dimension( :, :), pointer :: data
#% _init( data)
nl = size( data, 1)
n2 = size( data, 2)
#% _lop( scale( n2), sdata( nl, n2))
integer i1,i2
do i2= 1, n2
do i1= 1, nl
if( adj)
scale( i2) += sdata(il,i2) * data(il,i2)
else
sdata(il,i2) += scale( i2) * data(i1,i2)

Notice that to estimate scales, the adjoint forms an inner product of the raw data on the previ-
ously scaled data. Let the operator implementeddajetrace  be denoted by, which is
mnemonic for “data” and for “diagonal matrix,” and let the vector of scale factors be denoted
by s and the leveler byA. Now we consider the fitting go&l~ ADs. The trouble with this

fitting goal is that the solution is obviouss/~= 0. To avoid the trivial solutiors = 0, we can
choose from a variety of supplemental fitting goals. One possibility is that far-thescale

factor we could add the fitting goal ~ 1. Another possibility, perhaps better if some of the
signals have the opposite of the correct polarity, is that the sum of the scales should be approx-
imately unity. | regret that time has not yet allowed me to identify some interesting examples
and work them through.

1.3 LOCAL MONOPLANE ANNIHILATOR

LOMOPLAN (LOcal MOno PLane ANnihilator) is a data-adaptive filter that extinguishes a
local monoplane, but cannot extinguish a superposition of several planes. We presume an ideal
sedimentary model as made of (possibly curved) parallel layers. Because of the superposition
principle, data can be a superposition of several plane waves, but the ideal model should
consist locally of only a single plane. Thus, LOMOPLAN extinguishes an ideal model, but
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not typical data. | conceived of LOMOPLAN as the “ultimate” optimization criterion for
inversion problems in reflection seismology (1992b) but it has not yet demonstrated that it
can attain that lofty goal. Instead, however, working in two dimensions, it is useful in data
interpretation and in data quality inspection.

The main way we estimate parameters in reflection seismology is that we maximize the
coherence of theoretically redundant measurements. Thus, to estimate velocity and statics
shifts, we maximize something like the power in the stacked data. Here | propose another
optimization criterion for estimating model parameters and missing data. An interpreter look-
ing at a migrated section containing two dips in the same place suspects wave superposition
more likely than bedding texture superposition. To minimize the presence of multiple dip-
ping events in the same place, we should use the mono plane annini@&LAN ) filter as
the weighting operator for any fitting goal. Because the filter is intended for use on images
or migrated data, not on data directly, | call ipEaneannihilator, not glanewaveannihila-
tor. (A time-migration or merely a stack, however, might qualify as an image.) We should
avoid using the word “wavefront” because waves readily satisfy the superposition principle,
whereas images do not, and it is this aspect of images that | advocate and formulate as “prior
information.”

An example of a MOPLAN in two dimensions)y(+ pxd-), is explored in Chapter 4 of
PVI (Claerbout, 1992a), where the main goal is to estimatetthg{variation of px. Another
family of MOPLANSs arise from multidimensional prediction-error filtering described earlier
in this book and in PVI, Chapter 8.

Here | hypothesize that a MOPLAN may be a valuable weighting function for many esti-
mation problems in seismology. Perhaps we can estimate statics, interval velocity, and missing
data if we use the principle of minimizing the power out of a LOcal MOno PLane ANnihilator
(LOMOPLAN) on a migrated section. Thus, those embarrassing semicircles that we have seen
for years on our migrated sections may hold one of the keys for unlocking the secrets of statics
and lateral velocity variation. | do not claim that this concept is as powerful as our traditional
methods. | merely claim that we have not yet exploited this concept in a systematic way and
that it might prove useful where traditional methods break.

For an image model of nonoverlapping curved planes, a suitable choice of weighting
function for fitting problems is the local filter that destroys the best fitting local plane

1.3.1 Mono-plane deconvolution

The coefficients of a 2-D monoplane annihilator filter are defined to be the same as those of
a 2-D PEF of spatial order unity; in other words, those defined by either (1.1) or (1.2). The
filter can be lengthened in time but not in space. The choice of exactly two columns is a
choice to have an analytic form that can exactly destroy a single plane, but cannot destroy
two. Applied to two signals that are statistically independent, the filter (1.2) reduces to the
well-known prediction-error filter in the left column and zeros in the right column. If the filter
coefficients were extended in both directionstand to the right orx, the two-dimensional
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spectrum of the input would be flattened.

1.3.2 Monoplanes in local windows

The earth dip changes rapidly with location. In a small region there is a local dip and dip
bandwidth that determines the best LOMOPLAN (LOcal MOPLAN). To see how to cope
with the edge effects of filtering in a small region, and to see how to patch together these small
regions, recall subroutingatchn()  on page ?? and the weighting subroutines that work with

it.

Figure 1.4 shows a synthetic model that illustrates local variation in bedding. Notice dip-
ping bedding, curved bedding, unconformity between them, and a fault in the curved bedding.
Also, notice that the image has its amplitude tapered to zero on the left and right sides. After
local monoplane annihilation (LOMOPLAN), the continuous bedding is essentially gone. The
fault and unconformity remain.

INPUT T.OMOPI.AN

Figure 1.4: Left is a synthetic reflectivity model. Right is the result of local monoplane anni-
hilation. |Imn-sigmoid090[ER]

The local spatial prediction-error filters contain the essence of a factored form of the
inverse spectrum of the model.

Because the plane waves are local, the illustrations were made with nqgkile on page ??.
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1.3.3 Crossing dips

INPUT LOMOPLAN

Figure 1.5: Conflicting dips before and after application of a local monoplane annihilator.
Press button for movie. The movie sequence is: 1: data, 2: data after LOMOPLAN, 3: like
previous but windows not overlapping, 4: predicted ddman-conflicto0 [ER]

Figure 1.5 deserves careful study. The input frame is dipping events with amplitudes
slowly changing as they cross the frame. The dip of the events is not commensurate with the
mesh, so we use linear interpolation that accounts for the irregularity along an event. The
output panel tends to be small where there is only a single dip present. Where two dips cross,
they tend to be equal in magnitude. Studying the output more carefully, we notice that of the
two dips, the one that is strongest on the input becomes irregular and noisy on the output,
whereas the other dip tends to remain phase-coherent.

| could rebuild Figure 1.5 to do a better job of suppressing monodip areas if | passed the
image through a lowpass filter, and then designed a gapped deconvolution operator. Instead, |
preferred to show you high-frequency noise in the place of an attenuated wavefront.

The residual of prediction-error deconvolution tends to have a white spectrum in time.
This aspect of deconvolution is somewhat irritating and in practice it requires us to postfilter
for display, to regain continuity of signals. As is well known (PVI, for example), an alternative
to postfiltering is to put a gap in the filter. A gapped filter should work with 2-D filters too, but
it is too early to describe how experimenters will ultimately choose to arrange gaps, if any, in
2-D filters. There are some interesting possibilities. (Inserting a gap also reduces the required
number of CD iterations.)

1.3.4 Tests of 2-D LOMOPLAN on field data

Although the LOMOPLAN concept was developed for geophysinalblels not raw data,
initial experience showed that the LOMOPLAN program is effective for quality testing data
and data interpretation.
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Some field-data examples are in Figures 1.6 and 1.7. These results are not surprising.
A dominant local plane is removed, and noise or the second-from-strongest local plane is
left. These data sets fit the local plane model so well that subtracting the residual noise from
the data made little improvement. These figures are clearer on a video screen. To facilitate
examination of the residual on Figure 1.6 on paper (which has a lesser dynamic range than
video), | recolored the white residual with a short triangle filter on the time axis. The resid-

Surface(miles) Surface(miles)

21.5 22 22.5 23 23.5 24 24.5 25 21.5 22 22.5 23 23.5 24 24.5 25

INPUT T.OMOPTAN

Figure 1.6: Data section from the Gulf of Mexico (left) and after LOMOPLAN (right) Press
button for movie. | Imn-dgulf90 [ER]

ual in Figure 1.7 is large at the dead trace and wherever the data contains crossing events.
Also, closer examination showed that the strong residual trace near 1.1 km offset is apparently
slightly time-shifted, almost certainly a cable problem, perhaps resulting from a combination
of the stepout and a few dead pickups. Overall, the local-plane residual shows a low-frequency
water-velocity wave seeming to originate from the ship.

1.4 GRADIENT ALONG THE BEDDING PLANE

The LOMOPLAN (LOcal MOnoPLane ANnihilator) filter in three dimensions is a deconvo-
lution filter that takes a volume in and produces two volumes out.XFfbetput volume results
from a first order prediction-error filter on theaxis, and they-output volume is likewise on
the y-axis.

Although | conceived of 2-D LOMOPLAN as the “ultimate” optimization criterion for
inversion problems in reflection seismology of sedimentary sections, it turned out that it was
more useful in data interpretation and in data-quality inspection. In this study, | sought to
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Offset(km) Offset(km)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.8

(spuooas)auryy,
(spuooss)auy,

LOMOPLAN

Figure 1.7: Portion of Yilmaz and Cumro data set 27 (left) and after LOMOPLAN (right).

Press button for moviellmn-yc279Q [ER]

evaluate usefulness withreedimensional data such as 3-D stacks or migrated volumes, or
2-D prestack data.

In experimenting with 3-D LOMOPLAN, | came upon a conceptual oversimplification,
which although it is not precisely correct, gives a suitable feeling of the meaning of the op-
erator. Imagine that the earth was flat horizontal layers, except for occasional faults. Then,
to find the faults you might invoke the horizontal gradient of the 3-D continuum of data. The
horizontal components of gradient vanish except at a fault, where their relative magnitudes tell
you the orientation of the fault. Instead of using the gradient vector, you could use prediction-
error filters of first order (two components) aloxgndy directions. 3-D LOMOPLAN is like
this, but the flat horizontddedding may be dipping or curved. No output is produced (ideally)
except at faults. The 3-D LOMOPLAN is like the gradiextidng the plane of the beddingt
is nonzero where the bedding has an intrinsic change.

LOMOPLAN flags the bedding where there is an intrinsic change.

1.4.1 Definition of LOMOPLAN in 3-D

Three-dimensional LOMOPLAN is somewhat like multiple passes of two-dimensional LO-
MOPLAN; i.e., we first LOMOPLAN the { x)-plane for eacty, and then we LOMOPLAN
the {, y)-plane for eachx. Actually, 3-D LOMOPLAN is a little more complicated than this.
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Each LOMOPLAN filter is designed on all the data in a smiglk(y) volume.

To put the LOcal in LOMOPLAN we use subcubes (bricks). Recall that we can do 2-D
LOMOPLAN with the prediction-error subroutinnd_lopef() on page ??. To do 3-D
LOMOPLAN we need to make two calls to subroutified_lopef() , one for thex-axis
in-line planar filters and one for theaxis crossline filters. That is what | will try next time |
install this book on a computer with a bigger memory.

1.4.2 The quarterdome 3-D synthetic (qdome)

Figure 1.4 used a model calle@igmoid.” Using the same modeling concepts, | set out to
make a three-dimensional model. The model has horizontal layers near the top, a Gaussian
appearance in the middle, and dipping layers on the bottom, with horizontal unconformities
between the three regions. Figure 1.8 shows a vertical slice through the 3-D “gdome” model
and components of its LOMOPLAN. There is also a fault that will be described later. The

W—F km
O 0.4 0.8 1.2 1.6 P <. 4 =.8

J98

T OMOPT.AN

Figure 1.8: Left is a vertical slice through the 3-D “gdome” model. Center is the in-line
component of the LOMOPLAN. Right is the cross-line component of the LOMOPLAN.
Imn-gdomesico9(JCR]

most interesting part of the gdome model is the Gaussian center. | started from the equation
of aGaussian

Z(x,y,t) = e &I (1.3)
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and backsolved far

X2+ 2
t(x,y,2) = —In); (1.4)

Then | used a random-number generator to make a blocky one-dimensional impedance func-
tion of t. At each §,y,2) location in the model | used the impedance at tirpey, z), and

finally defined reflectivity as the logarithmic derivative of the impedance. Without careful in-
terpolation (particularly where the beds pinch out) a variety of curious artifacts appear. | hope
to find time to use the experience of making the gdome model to make a tutorial lesson on
interpolation. A refinement to the model is that within a certain subvolume thet{xng, z)

is given a small additive constant. This gives a fault along the edge of the subvolume. Ray
Abma defined the subvolume for me in the gqdome model. The fault looks quite realistic, and

it is easy to make faults of any shape, though | wonder how they would relate to realistic fault
dynamics. Figure 1.9 shows a top view of the 3-D qdome model and components of its LO-
MOPLAN. Notice that the cross-line spacing has been chosen to be double the in-line spacing.
Evidently a consequence of this, in both Figure 1.8 and Figure 1.9, is that the Gaussian dome
is not so well suppressed on the crossline cut as on the in-line cut. By comparison, notice that
the horizontal bedding above the dome is perfectly suppressed, whereas the dipping bedding
below the dome is imperfectly suppressed.

wrg-y

LOMORPILAIN

Figure 1.9: Left is a horizontal slice through the 3-D gdome model. Center is the in-line
component of the LOMOPLAN. Right is the cross-line component of the LOMOPLAN. Press
button for volume view. Imn-qdometocoggCR]

Finally, | became irritated at the need to lookhab output volumes. Because I rarely if
ever interpreted the polarity of the LOMOPLAN components, | formed their sum of squares
and show the single square root volume in Figure 1.10.

1.5 3-D SPECTRAL FACTORIZATION

Hi Sergey, Matt, and Sean, Here are my latest speculations, plans: The 3-D Lomoplan resem-
bles a gradient, one field in, two or three out. Lomoplan times its adjoint is like a generalized
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un'S-N

LOMOPLAN

Figure 1.10: Left is the model. Right is the magnitude of the LOMOPLAN components in
Figure 1.9. Press button for volume vieWmn-qdometoraquR]

laplacian. Factorizing it yields a lomoplan generalization of the helix derivative, i.e. a one-to-
one operator with the same spectral charactoristic as the original lomoplan. It will probably
not come out to be a juxtaposition of planes, will be more cube like. The advantage of be-
ing one-to-one is that it can be used as a preconditioner. The application, naturally enough,
is estimating things with a prescribed dip spectrum. Things like missing data and velocities.
Why use multiplanar lomoplan estimates if they will then be converted by this complicated
process into a cube? Why not estimate the cube directly? Maybe to impose the “pancake”
model instead of the noodle model of covariance. Maybe to reduce the number of coefficients
to estimate. | haven’t figured out yet how to convert this speculation into an example leading
to some figures. If you like the idea, feel free to beat me to it :)
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